

ULDB Recovery Systems

Christopher Shreves

546/Carrier Systems Branch

Review

Recovery Systems

Objectives

- Decelerate payload from termination to safe impact
- Provide impact attenuation for land recovery
- Provide flotation for water recovery
- Provide location aids for remote areas

Descent

Current method is unfurled flat circular chute in flight train

- + Simple design
- + Low risk
- + Inexpensive
- Impact accuracy ~3.22 km radius
- Unacceptable material degradation due to environmental exposure
- Weight: 215 kg Cost: \$12,566

Recovery Systems

Descent Alternatives

Enveloped Flat Circular

Unfurled chute in flight train, enveloped in protective material

Packed Flat Circular

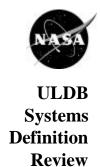
Better material protection, but more complicated

Packed Two-Stage System

Improved accuracy via quick first-stage descent

Guided Parafoil

Highest impact accuracy, but very complicated and expensive



Recovery Systems

Descent Alternatives

Enveloped Flat Circular

- + Simple
- + Low deployment risk
- + Slightly lower opening shock load
- + Small weight penalty
- More expensive
- No improvement on impact accuracy
- Potential problem with canopy/sleeve friction
- Untried design
- Weight: ~238 kg Cost: ~\$17,070

Descent Alternatives

Packed Flat Circular

- + Inexpensive
- + Small weight penalty
- + Lower opening shock load
- + Common design
- Higher complexity
- No improvement on impact accuracy
- Weight: ~218 kg Cost: ~\$14,070

Recovery Systems

Descent Alternatives

Packed Two-Stage System

- + Small weight penalty
- + Lower opening shock load
- + Impact accuracy improved to ~400 m radius
- + Common design
- More expensive
- Higher complexity
- Weight: ~229 kg Cost: ~\$18,070

Recovery Systems

Descent Alternatives

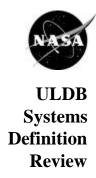
Guided Parafoil

- + Small weight penalty
- + Lower opening shock load
- + Impact accuracy improved to 200 m radius
- Initially much more expensive
- Much higher complexity
- New technology
- Weight: ~227 kg
- Initial cost: ~\$130,000 Refurb: ~\$10-15K

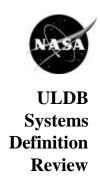
Recovery Systems

Descent Alternatives

Trade Study						
	Maximum	Flat Circular As Is	Enveloped Flat Circular	Packed Flat Circular	2-Stage System	GPS-Guided Parafoil
Performance	10	5	6	6	8	9
Weight	10	8	6	8	7	7
Size	5	3	3	4	4	3
Cost	8	7	4	6	5	2
Schedule	8	8	7	7	6	5
Power	5	5	5	5	4	3
Interfaces	5	4	4	3	3	2
Hazmat	5	5	5	5	4	3
Risk	10	9	6	7	6	4
Total	66	54	46	51	47	38


Packed flat circular scores higher, if greater impact accuracy required then use packed two-stage system

> Recovery Systems


Descent Alternatives

Characteristics					
	Flat Circular As Is	Enveloped Flat Circular	Packed Flat Circular	2-Stage System	GPS-Guided Parafoil
Weight, kg	215	238	218	229	227
Cost, \$	12,566	17,070	14,070	18,070	130,000
Impact Radius, km	3.2	3.2	3.2	0.4	0.2
Max Load, g	7	7	7	7.4	3

Opening Load Attenuator

- Opening shock of parachute imparts high *g*-levels on payload
- Balloon Branch has device that dissipates shock energy via ripping of stitches in flight-train webbing
- Ground tested & test-flown
- Use as needed
- Weight: 16-31 kg Cost: \$5,500

Land Impact Options

PASSIVE ATTENUATION DEVICES

Crush Pads

Cardboard & styrofoam; simple, cheap, balloonqualified; environmental exposure effects unknown

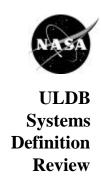
• Aluminum Honeycomb Pads

Rocket-qualified, higher absorbed energy/cu-ft, higher cost (\$60/cu-ft)

ACTIVE ATTENUATION DEVICES

Air Bags

Compact, expensive, higher risk, level of effort; double-duty as water impact bags?



Recovery Systems

Land Impact Options

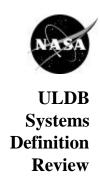
Trade Study					
	Maximum	Crush Pads	Нопеусоть	Air Bags	
Performance	10	10	10	9	
Weight	10	9	9	7	
Size	5	3	4	4	
Cost	8	7	6	4	
Schedule	8	8	8	5	
Power	5	5	5	4	
Interfaces	5	4	4	3	
Hazmat	5	5	5	4	
Risk	10	9	9	7	
Total	66	60	60	47	

No clear winner between simple solutions of crush pads and aluminum honeycomb

Water Impact Options

PASSIVE FLOTATION DEVICES

Sealed Structural Volume


Structural tubing sealed to provide positive buoyancy

• Foam-Filled Structural Volume

Replace air with foam; lower risk than sealed volume, slightly heavier

Strap-On Floats

Off-the-shelf floats/buoys strapped to structural members; fewer mechanical interface problems

Water Impact Options

ACTIVE FLOTATION DEVICES

Structure-Mounted Inflatable

Deployable air bag attached to gondola; compact, higher risk, higher cost

Tethered Inflatable Buoy

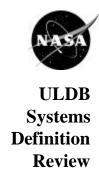
Deployable air bag tethered to submerged gondola; semi-qualified on rocket payloads, fewer mechanical interface issues

> Recovery Systems

Water Impact Options

Trade Study						
	Maximum	Sealed Volume	Foam-Filled Structure	Strap-O _n Floats	Hard-Mount Inflatable	Tethered Inflatable
Performance	10	10	10	10	10	10
Weight	10	10	9	9	8	8
Size	5	3	3	3	4	4
Cost	8	7	6	6	4	4
Schedule	8	7	8	8	5	5
Power	5	5	5	5	4	4
Interfaces	5	2	2	3	4	5
Hazmat	5	5	5	5	4	4
Risk	10	7	10	10	7	7
Total	66	56	58	59	50	51

Strap-on floats win due to ease of interface

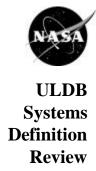


Recovery Systems

Location Aids

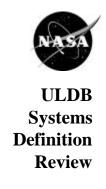
- In case of unplanned termination, need location aids for recovery in remote areas
- Sounding Rocket Program has successfully used DF radio beacons, ARGOS transmitters, strobe lights

	ARGOS	164.X MHz	242.0 MHz
Xmitter Cost, \$	3,380	500	1,711
Xmitter Weight, g	273	64	65
Range, km	N/A	32	160
Signal Life,			
days/kg of batteries	7.0	2,897	13.2



Additional Systems

Options being persued


- Dropsonde development
 - Deployable GPS sonde to give "near real time" wind measurements for descent vector determination
- Automated chute cut-away

Investigation of approach to automatically cut chute after Earth impact

Recommendation

- Packed flat circular parachute system
- Opening shock load attenuator (optional)
- Strap-on flotation devices (optional)
- Crush pads (Aluminum honeycomb optional)
- ARGOS transmitter and strobe
- Estimated system cost: \$24,155
- Estimated system weight:
 224 kg without options, 291 kg with options

Cost & Weight Breakdown

	Weight, kg	Cost
Parachute System	218	\$14,070
Shock Attenuator (opt)	16	\$5,500
Land Impact Attenuator	2.3	\$180
Water Recovery (opt)	51	\$200
Location Aids	3.3	\$4,205
TOTAL	291	\$24,155